Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles

نویسندگان

  • David Abrego
  • Bette L. Willis
  • Madeleine J. H. van Oppen
چکیده

The effects of temperature and light on the breakdown of the coral-Symbiodinium symbiosis are well documented but current understanding of their roles during initial uptake and establishment of symbiosis is limited. In this study, we investigate how temperature and light affect the uptake of the algal symbionts, ITS1 types C1 and D, by juveniles of the broadcast-spawning corals Acropora tenuis and A. millepora. Elevated temperatures had a strong negative effect on Symbiodinium uptake in both coral species, with corals at 31 °C showing as little as 8% uptake compared to 87% at 28 °C. Juveniles in high light treatments (390 µmol photons m(-2) s(-1)) had lower cell counts across all temperatures, emphasizing the importance of the light environment during the initial uptake phase. The proportions of the two Symbiodinium types taken up, as quantified by a real time PCR assay using clade C- and D-specific primers, were also influenced by temperature, although variation in uptake dynamics between the two coral species indicates a host effect. At 28 °C, A. tenuis juveniles were dominated by C1 Symbiodinium, and while the number of D Symbiodinium cells increased at 31 °C, they never exceeded the number of C1 cells. In contrast, juveniles of A. millepora had approximately equal numbers of C1 and D cells at 28 °C, but were dominated by D at 30 °C and 31 °C. This study highlights the significant role that environmental factors play in the establishment of coral-Symbiodinium symbiosis and provides insights into how potentially competing Symbiodinium types take up residence in coral juveniles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress.

Reef-building corals harbor symbiotic dinoflagellates, Symbiodinium spp., which are currently divided into several clades. The responses of corals associated with different Symbiodinium clades to thermal stress are not well understood, especially at a gene expression level. Juveniles of the coral Acropora tenuis inoculated with different algal types (clade A or D) were exposed to thermal stress...

متن کامل

Shift of symbiont communities in Acropora tenuis juveniles under heat stress

Ocean warming is a major threat to coral reefs, leading to an increasing frequency and amplitude of coral bleaching events, where the coral and its algal symbiont associations breakdown. Long-term change and resilience of a symbiont community in coral juveniles is thought to be one of the most important aspects for determining thermal tolerance of the coral holobionts; however, despite its impo...

متن کامل

The acquisition of exogenous algal symbionts by an octocoral after bleaching.

Episodes of coral bleaching (loss of the symbiotic dinoflagellates) and coral mortality have occurred with increasing frequency over the past two decades. Although some corals recover from bleaching events, the source of the repopulating symbionts is unknown. Here we show that after bleaching, the adult octocoral Briareum sp. acquire dinoflagellate symbionts (Symbiodinium sp.) from the environm...

متن کامل

Early molecular responses of coral larvae to hyperthermal stress.

Most of the work on the impact of elevated temperature and light on Symbiodinium-invertebrate symbioses have focused primarily on how the photosynthetic (algal) partner is impacted. Understanding how the same stresses affect the invertebrate host, however, is in its infancy. In this study, we re-examined the direct effect of elevated temperatures on the invertebrate host exploring the early tra...

متن کامل

Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudicha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012